

Forecasting biodiversity reorganization with climate change

Jennifer Swenson, PI, Duke University James Clark, Co-PI, Duke University

AIST-16-0052

Additional funding: NSF Macrosystems Biology, NSF EAGER, NSF Community Ecology

Students and Post-Docs

Amanda SchwantesPost-Doc

John Fay Geospatial analysist, programmer

Christopher Kilner
PhD student

Chase Nuñez, PhD Student

Bradley Tomasek, PhD Student

Taylor Minich

Master of Environmental

Management student

Christoph Hellmeyr Post-Doc

Decision-makers, scientists anticipate biodiversity change

Goals

Expand access to data and effective modeling Automate real-time prediction

Approach

- Cloud-based predictors (climate, soils, remotely sensing), biodiversity responses (plants, birds, mammals, arthropods)
- Interactive interface
- Generalized joint attribute modeling (GJAM) analyzes community at multiple scales combined with food
- Predictive distributions/sensitivity, entire community response

Current models provide limited guidance

- Species distribution models (SDMs), species richness models (SRMs):
 - anywhere from o to 50% of species at risk (Urban et al. Science 2015)
 - recent meta-analysis: 8%
- Scale mismatch: fit at one scale, predict at another
 - SDMs: Independent models for each species
 - SRMs: only the number of species
 - 'Simpson's Paradox', the 'ecological fallacy' (Clark et al. 2011)

Scalle: paridity benefits loblolly

Plot scale

Individual scale: moisture benefits loblolly

Paradox Estro

What's hard about community response?

Data are:

- Multivariate
- Multifarious
- Median-zero

Models are:

- Individual species
- Limited to one species group or to presence-absence
- Zero-inflated; non-linear link functions

Multifarious observations

Discrete abundance: counts

Continuous abundance: biomass, concentration

Count composition: microbiome, paleoecology

Fractional composition: satellite imagery, photoplots

Ordinal scores: health status, phenological state

Categorical: plot status, traits

Median-zero

Zero-inflated models don't handle many zeros

Diverse data: National Ecological Observatory Network (NEON)

- Thousands of plots
 - Ground beetles
 - Small mammals
 - Mosquitos
 - Ticks
 - Plants
 - Birds
- Hyperspectral and LiDAR data

Diverse data: NEON

- Ground beetles pitfall traps; counts
- Plant cover abundance—percent, censored at 0.5%
- Small mammals—live traps; counts
- Birds—point counts

Taxonomically distant species groups in NEON

Sampling effort/scale varies by group

Diverse data: Breeding Bird Survey (BBS) and eBird

- Citizen science data
- Sampling effort available
- Sparse response (99.9% zeros)

Diverse data: US Forest Inventory Analysis (FIA) Data

- 151,355 locations
- Millions of trees
- Plots re-censused every 5-10 years

Generalized joint attribute modeling—GJAM

- All species jointly
 - Direct effects (main effects and interactions)
 - Indirect effects of species on one another
- On the observation scale (no non-linear transformations)
- Massive zeros
- Generative:
 - predict communities given environment
 - inversely, environment given community (i.e. *fingerprinting*)

Standard approach (e.g., glm,...)

gjam idea

Role of prediction

- Generative model
 - Predict the fitted data?

Role of prediction

- Generative model
 - Predict the fitted data?
- Parameter estimation
 - Sensitivity
- Inverse prediction
 - Environmental fingerprint
- Location fingerprint
 - Location uniquely determines community?

Dimension reduction

• 10² species means 10⁴ parameters

NASA

Parameter recovery in simulation Combine all data types

Continuous (CON)
Discrete abundance (DA)
Continuous abundance (CON)
Presence-absence (PA)
Composition count (CC)
Ordinal count (OC)

Why is GJAM model-based?

- Generative for community
 - Model-based sensitivity, uncertainty
- Combine data types; uneven effort
- High-dimensional (1000 species/OTUs)
 - Model-based aggregation
- Estimates on the observation scale (no non-linear link)
- Accurate prediction
 - Forward: $X \rightarrow Y$
 - Inverse: $X \leftarrow Y$
 - Map **fingerprint**: L ← X ← Y

GJAM for the joint community

Application at NEON

– Which species are sensitive?

- Environment and location fingerprints
- Community change

Cloud-based predictors of biodiversity change

Tutorials for data acquisition in GEE

- Environmental and remote sensing data
- Simple inputs:
 - dataset
 - metric of interest
 - temporal/spatial averaging

Automated workflows download/preprocess

- Geospatial climate, landscape variables
 - Climate: precipitation, PET, temperature, water deficit,
 VPD
 - Topography: slope, elevation, aspect
 - Soils: available water storage, % sand, % clay, ...
 - Land cover
- Remote sensing
 - MODIS: LST, ET, GPP, LAI, EVI/NDVI, phenology
 - SMOS: soil moisture
 - Landsat: vegetation and water indices
 - Lidar

Cloud Computing

- Processing with GEE python API cloud-computing platform
 - Efficient pre-processing (e.g., filtering with QC bands from MODIS, Landsat products)
 - Temporal averaging: months, seasons, years
 - Spatial averaging: points, plots/grids, points with buffers

Lidar: habitat structure

- Data processed for 2017, ~3,000 plots, 39 sites
- Habitat structure metrics

Plot HARV34:

relief ratio: 0.52

max height: 29.5

mean height: 15.2 ± 9.5 22.4 ± 6.5

Plot HARV₃6:

0.76

29.1

Precision prediction: one distribution for all species

Taxonomically diverse species groups

Ground beetle pitfall Plant cover plot rodent live trap

NASA

The community 'fingerprints' its environment...

Species at risk with +2°C

The value of a generative model-based

Clark et al. 2017, *Ecol Monogr*

Communities defined by response to the environment

• left: communities defined by response

Communities defined by response to the environment Species response

 left: communities defined by response

 right: species by environment responses

Community-wide effects

Predictor

Clark et al. 2017, *Ecol Monogr*

Environment defined by effect on community

Community effect

Predictors

Species response

 left: predictors defined by effect

Environment defined by effect on community

Community effect

Predictors Species response

 left: predictors defined by effect

 right: species by environment responses

Location fingerprint the community knows its location

Arrows point from true sample location to predicted sample location

+2°C: Community reorganization

Current climate

+2°C: Community reorganization

 Change mean and variance of all climate variables, mediated by habitat

The missing component: food

- Biodiversity predictions emphasize climate/edaphic
- Challenge:
 - Mean benefit/variance cost
 - Scale-dependence: each consumer in its own way

Scale-dependent variance in resources

NSF-funded MASTIF: Mast inference and forecasting

Mean benefit vs. variance cost of resources: scale-dependence, diet breadth

Source detection: fecundity of each tree:

Habitat-specific mean vs variance at all scales:

MASTIF: translate individual fecundity to habitat resource value

Resource Score = Mean Seed Rain x Nutritional / Variance

- Nutritional database of consumer, site-specific resource scores
- Use estimates of fecundity and dispersal to expand inference to FIA

Efficient to add new datasets

Biodiversity data

- NEON: bird counts, pathogen status of ticks, mammals
- NSF funding: mast availability and large vertebrates
- FIA
- eBird/BBS
- Scripts/tutorials on GitHub/CRAN for user data

Environmental, habitat, remote sensing

- Incorporating Lidar from NEON
- Integrating additional datasets with GEE
- Download/pre-process from NASA's DAACs for remote sensing data not available on GEE

Web-based predictions

http://www.pbgjam.org/

- Location-based
- Species or species group
- Question-driven
- Explanation-the important variables contributing to change

C) Richness change (% losses per 5 yr)

Fully open-source, algorithm documentation

- Fully open-source on CRAN
- Distribution theory in primary literature
- Algorithm documentation Rmarkdown vignettes, R help pages
- GJAM on cran: http://rpubs.com/jimclark/234762
 - Installed > 16,000 times
- MASTIF built, ready for cran: http://rpubs.com/jimclark/281413

Project Schedule

Additional info

- Bachelot B., Uriarte M., Muscarella R., Forero-Montana J., Thompson J., McGuire K., Zimmerman J.K., Swenson N.G. and J.S. Clark. 2018. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. **Ecology**.
- Clark. J.S. 2016. Why species tell us more about traits than traits tell us about species: predictive analysis. *Ecology*.
- Clark. J.S. 2016. gjam: Generalized Joint Attribute Modeling, https://cran.r-project.org/web/packages/gjam/index.html
- Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2017. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs.
- Taylor-Rodriquez, D., Kaufeld, K.A., E. M. Schliep, J.S. Clark, and A.E. Gelfand. 2017. *Joint species distribution modeling: dimension reduction using Dirichlet processes. Bayesian Analysis*.

